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Numerical weather prediction

Modern weather forecasts rely on physical numerical weather
prediction (NWP) models of atmospheric processes.

Source: NOAA1

However, there are major
sources of uncertainty (initial
conditions, physical models).

Ensemble simulations seek to
quantify uncertainty and pro-
vide probabilistic forecasts.

Despite continued improve-
ments ensemble forecasts are
subject to systematic errors.

1https://celebrating200years.noaa.gov/breakthroughs/climate_

model/AtmosphericModelSchematic.png

https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
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Example: Ensemble forecasts of temperature
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Example: Ensemble forecasts of temperature
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Post-processing with distributional regression models

NWP ensemble forecasts exhibit systematic errors (biases, lack of
calibration, . . . ) that require correction via post-processing.

This is achieved via distributional regression models for statistical
post-processing which produce forecast distributions.

Example: EMOS for temperature forecasting

Using ensemble predictions of tempera-
ture as input the post-processed forecast
takes the form of a Gaussian distribution.

y |Xt2m ∼ N(µ,σ),

µ = a + b ·mean(Xt2m)

σ = c + d · sd(Xt2m)
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Parametric distributional regression models

Model probability distribution of target variable y given input
predictors X by a parametric distribution Fθ,

y |X ∼ Fθ, where θ = g(X)

with a link function g connecting predictors X and distribution
parameters θ.

Limitations of fully parametric approaches:

I requires choice of link function g
I difficult to specify functional form of dependencies if many possible

predictors are available

I requires estimation of parameters of g
I global (using all training data) or local (location-specific) models?

I requires choice of parametric model Fθ
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Neural networks for distributional regression

Novel semi-parametric approach: Estimate distribution parameters
θ directly as output of a neural network designed to

I learn arbitrary nonlinear relations between predictors and
distribution parameters in an automated, data-driven manner,

I generate local adaptivity in globally estimated models,

I gain meteorological insight from trained models.

Rasp, S. and Lerch, S. (2018)
Neural networks for post-processing ensemble weather forecasts,
Monthly Weather Review, 146, 3885–3900.

Python/R code available at https://github.com/slerch/ppnn.

https://github.com/slerch/ppnn
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Data

I 10 years of forecasts and
observations (2007–2016)

I 48 hours-ahead ECMWF
50-member ensemble
forecasts of temperature
(and 17 other variables)

I station observations at
537 locations

I data from 2016 used as
evaluation set

I two training datasets: 2015
and 2007–2015
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Neural networks for distributional regression

I Input: Predictor
variables (NWP
quantities, station
characteristics).

I Output:
Distribution
parameters θ

I Embeddings
generate local
adaptivity.

Training via CRPS minimization (mathematically principled
non-standard choice).
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Example: Ensemble forecasts of temperature
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Example: Ensemble forecasts of temperature
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Advanced benchmark methods

I Gradient boosting for EMOS (Messner et al., 2017):
Let Fθ = N(µ,σ) and

(µ, σ) =
(
XTβ, exp(XTγ)

)
,

and iteratively update coefficient vector entries improving the
current model fit most.

I Quantile regression forest (Meinshausen, 2006; Taillardat et
al., 2016): Nonparametric quantile regression based on
random forests. Quantile estimates are obtained from an
ensemble of decision trees.

Have to be implemented as local models to achieve good forecasts.
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Overview of results

CRPS: Continuous ranked probability score, lower is better

Model Mean CRPS for
training period

2015 2007–2015

Raw ensemble 1.16 1.16

Benchmark post-processing methods

Global EMOS 1.01 1.00
Local EMOS 0.90 0.90
Local EMOS with boosting 0.85 0.80
Local quantile regression forest 0.95 0.81

Neural network models

Neural network with auxiliary predictors 0.82 0.78
and station embeddings



14

Station-specific comparison of NN and benchmark models

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

48

50

52

54

56

7.5 10.0 12.5 15.0

Longitude

La
tit

ud
e

Station-specific best model is a
NN model / benchmark model

NN models perform best at more
than 80% of the stations.

Differences are statistically signifi-
cant at a large fraction of stations.



15

Meteorological interpreation of neural network models
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Challenges: Incorporating spatial information

Ensemble forecasts are gridded 2D fields of forecasts of weather
variables. Thus far, those were interpolated to station locations.

Gridded ECMWF forecasts over Europe (0.5◦ resolution, 81× 81 pixels)

However, large-scale spatial structure and predictability information
(e.g., ‘weather regimes’) get lost in the interpolation step.
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Challenges: Incorporating ensemble information

Ensemble members provide 50 physically coherent forecasts of
weather variables. Thus far, only mean and standard deviation of
(interpolated) ensemble forecasts were used.

  

50
 x

50
 x

Possibly important uncertainty information might get lost by the
use of summary statistics.
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Job advertisements

I am looking for PhD students to develop AI methods for
post-processing and probabilistic weather forecasting.

Backgrounds in mathematics, computer science and/or
atmospheric sciences welcome!

Starting dates around mid-2021.

For details, contact me at Sebastian.Lerch@kit.edu.

mailto:Sebastian.Lerch@kit.edu
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Summary
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I flexible, automated and data-driven modelling of nonlinear
relations between predictors and distribution parameters

I perform better than state of the art approaches

I surprisingly computationally efficient and scale well

I gain meteorological insight from trained models

Rasp, S. and Lerch, S. (2018)
Neural networks for post-processing ensemble weather forecasts,
Monthly Weather Review, 146, 3885–3900.

Python/R code available at https://github.com/slerch/ppnn.

https://github.com/slerch/ppnn

